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UNIT IV
Trees
Introduction Terminology
Representation of trees,
Binary trees abstract data type
Properties of binary trees

Binary tree representation
Binary tree traversals: In order, preorder, post order

Binary search trees Definition
Operations:searching BST, insert into BST, delete from a BST, Height of a BST.

Trees: Non-Linear data structure

A data structure is said to be linear if its elements form a sequence or a linear list. Previous

linear data structures that we have studied like an array, stacks, queues and linked lists organize
data in linear order. A data structure is said to be non linear ifits elements form a hierarchical
classification where, data items appear at various levels.

I'rees and Graphs are widely used non-linear data structures. Tree and graph structures represent
hierarchical relationship between individual data elements. Graphs are nothing but trees with
certain restrictions removed. —

Treefs represent a special case of more general structures known as graphs. In a graph, there is no
restrictions on the number of links that can enter or leave a node, and cycles may be present in the
graph. The figure 5.1.1 shows a tree and a non-tree.

Figure 5.1.1 A Tree and a not 3 tree

Tree is a popular data structure used in wid

e range of applicat:
defined as follows.. g pplications. A tree data structure can be

Tree "f' a nun-ll*ncar data structure which organizes data in hie
recursive definition.

A tree data structure can also be defined as follows

A tree s a finite-set of one or more nodes such that:

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScanner1



— - ' . ia!ts | @

UNIT- IV | o i
l maining nodes are partitioned Into n>=(

oot. The re _Tn are the subtrees of the

There is a specially designated node called the 1
I is a tree. We call Tl, ..

disjoint sets T1, ..., Tn, where each of these sets
root. ’ ‘

A tree is hierarchical collection of nodes. One of the nodes, known as the root, 1s at the tn]:! ﬂff the |
hierarchy. Each node can have at most one link coming into it. The node where the link originates 1s
called the parent node. The root node has no parent. The links leaving a node (any number of links
are allowed) point to child nodes. Trees are recursive structures. Each child node is itself the root of

_a subtree. At the bottom of the tree are leaf nodes, which have no children.

Advantages of trees _

Trees are so useful and frequently used, because they have some very serious advantages:

» Irees reflect structural relationships in the data

» Trees are used to represent hierarchies

 Trees provide an efficient insertion and searching

» Trees are very flexible data, allowing to move sub trees around with minimum effort

Introduction Terminology

In a Tree, Every individual element is called as Node. Node in a tree data structure, stores the actual
data of that particular element and link to next element in hierarchical structure. Example

TREE with 11 nodes and 10 edges

- In any tree with ‘N’ nodes there
will be maximum of ‘N-1° edges

== In a tree every individual
element is called as ‘NODE’

¢
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l. Root

 —

In a tree data structure, the first node is called as Root Node. Every tree must have root node. We
_can say that root node is the origin of tree data structure. In any tree, there must be only one root
node. We never lave multiple root nodes in a tree. In above tree, A 1s a Root node

2. Edge -

In a tree data structure, the connecting link between any two nodes 1s called as EDGE. In a tree with
'N' number of nodes there will be a maximum of 'N-1' number of edges.

3. Parent

Ilrl a tree data structure, the node which is predecessor of any node is called as PARENT NODE. In
simple words, the node which has branch from it to any other node is called as parent node. Parent
node can also be defined as "The node which has child / children". e.g., Parent (A,B,C,D).

4. Child

II‘I a tree data structure, the node which is descendant of any node is called as CHILD Node. In
simple words, the node which has a link from its parent node is called as child node. In a tree, any
parent node can have any number of child nodes. In a tree, all the nodes except root are child nodes.

€.g., Children of D are (H, LJ).

5. Siblings

[n a tree data structure, nodes which belong to same Parent are called as SIBLINGS. In simple
words, the nodes with same parent are called as Sibling nodes. Ex: Siblings (B,C, D)

6. Leaf

In a tree data structure, the node which does not have a child (or) node with degree zero is called
as LEAF Node. In simple words, a leaf is a node with no child.

s S _——————==——————e S —————_——_———————
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S | | Nodes. External node 18

) lled as Externa
In a tree data structure, the lcaf nodes are also ca o inal' node. EX: (K,L,F,G.M:L 1))

with no child. In a tree, leaf node is also called as

also a node )

?.- Internal Nodes .
1d ie o ERNAL Node. In simple
In a tree data structure, the node which has atleast one child is called as INT

words, an internal node is a node with atleast
In a tree data structure, nodes other than lcafl Py
also said to be Internal Node if the tree has more than one nodec.

‘Non-Terminal' nodes. Ex:B,C,D,E,H

one child.

t node 1s
nodes are called as Internal Nodes. The root

Internal nodes are also called as

8. Degree

of subtrees of a node 1S
total number of children it

'Degree of Tree'

In a tree data structure. the total number of children of a node (ur)numbc'r
called as DEGREE of that Node. In simple words, the Degree of a node 1s
has. The highest degree of a node among all the nodes in a tree IS called as

Here Degrees of Bis 3
Here Degrec of Als 2
Here Degree of Fis O

- In any tree, “Degree’ a node is total
9 G o number of children it has.
9. Level

[n a tree data structure, the root node is said to be at Level 0 and the children of root node are at
Level 1 and the children of the nodes which are at Level 1 will be at Level 2 and so on... In simple
words, in a tree each step from top to bottom is called as a Level and the Level count starts with '0’
and incremented by one at each level (Step). Some authors start root level with 1.

10. Height

In a tree data structure, the total number of edges from leaf node to a particular node in the longest

path is called as HEIGHT of that Node. In a tree. heigh IS sai -
. , height of the root node is said to b ght of th
tree. In a tree, height of all leaf nodes is '0'. 0 be height of the

11. Depth | )
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- In any tree, ‘Path’ is a sequence

of nodes and edges between two
nodes.

Here, 'P_:ag_th' I:!tet}wa-qn AR)is
TA-B-E-J3)

Here, ‘Path’ between C & K is
C-G-K

13. Sub Tree

-

In a tree d: '
data struc}ure, cach child from a node forms a subtree recursively. Every child node will
qf orm a subtree on its parent node.

Subtree

Tree Representations

A tree data structure can be represented in two methods. Those methods are as follows

|.List Representation

2. Left Child - Right Sibling Representation

Consider the following tree. ..

—
—-‘F——

5=~
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T e - e node with data and an '

|. List Representation e for reprcscntiﬂg th .

. Ly,
In this representation, we usc two tyPe: y other node directly. Th;
for representing only references. ode and |
linked to an intemal node throug

process repeats for all the nodes in the tree.

: d
The above tree example can be represente

Fig: List representation of above Tree

List Representation -
—(A(B(E(K,L),F),C(G),D(H(M),1,])))
— The root comes first, followed by a list of sub-trees —

data |link1 | link2 ]| ... link k

—————

Fig: Possible node structure for a tree of degree k

2. Left Child - Right Sibling Representation

| 1bling then righy
otherwise that field stores NULL. B reference f; ld store ;dr:v IS¢ that fie]q stores
Slblln z
+he above tree example can be representeq yg; g node |
follows... g Left Chjiy |
“Right Sibling . |
res.entatiﬂl] as 1
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data
o left child |right sibling

(o ey
O ) GGG
GO—CD ©

Representation as a Degree ~Two Tree

To obtain degree-two tree representation of a tree, rotate the right- sibling pointers in the left child-
right sibling tree clockwise by 45 degrees. In a degree-two representation, the two children of anode

are referred as left and nght children.

*Figure 5.6: Left child xight child treec representation of a tree (p.191)

Binary Trees

Introduction

In a normal tree, every node can have any number of children. Binary tree is a special type of tree
data structure in which every node can have a maximum of 2 children. One is known as left child
and the other i1s known as right child.

A tree in which every node can have a maximum of two children is called as Binary Tree.

In a binary tree, every node can have either 0 children or 1 child or 2 children but not more than 2
children. Example

There are different types of binary trees and they are...

e e — e wa —— e e - =y -

Scanned with CamScanner

WWW . J nthaStU pd ateS . CO m Scanned with CamScanner7




Rk
UNIT- IV - '
. , V!

l. étrictly Binary Tree , : _
' t in strictly bina
axim"]‘[] Of ftwo Chl]drﬂﬂ- Bu I y ry trEEj e"’&h 1

aveam : | node must j
s every interna have exﬁtﬂy

In a binary tree, every node can h . That mean
node should have exactly two children or none. ows

two children. A strictly Binary Tree can be | | '
her two or zero number of children 1s called Strictly Biriah

A binary tree in which every node has eit Tree or Proper Binary Tree or 2-Tree

Tree. Strictly binary tree is also called as Full Binary

2. Complete Binary Tree |
an have a maximum of two children. But in strictly binary tree, every

In a binary tree, every node ¢
” ” ry tree all the nodes must hgy,

node should have exactly two children or none and in complete bina
level of complete binary tree there must be 2 level number of

exactly two children and at every
nodes. For example at level 2 there must be 2*2 = 4 nodes and at level 3 there must be 23 = §

nodes. =

A binary tree in which every internal node has exactly two children and all leaf nodes are at same

level 1s called Complete Binary Tree. ~

Complete binary tree is also called as Perfect Binary Tree

Full BT VS Complete BT

m A full binary treeknf depth k is a binary tree of
depth k& having 2 -1 nodes, k>=0.
= A binary tree with n nodes and depth kis

complete iff its nodes correspond to the nodes
Numbered from 1 to 7 in the full binary tree of

AL FTER 5

= = — — = e — e
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Definition: A binary tree is a finite set of nodes that is either empty or consists of a root and two
disjoint binary trees called left subtree and ri ght subtree.

ADT contains specification for the binary tree ADT.

Structure Binary _Tree(abbreviated BinTree) is

objects: a finite set of nodes either empty or consisting of a root node, left Binary Tree, and right
Binary Tree.

Functions:

for all br. btl. bt2 € BinTree, item € element

Bintree Create()::= creates an empty binary tree

Boolean IsEmpty(bt)::= 1If (bt=—emply binary tree) return TRUE else return FALSE

BinTree MakeBT(bt1, item, bt2)::= return a binary tree whose left subtree is b1/, whose right
subtree 1s b2, and whose root node contains the data item

—_—

Bintree Lchild(br)::= if (ISEmpty(b1)) return error ‘else return the left subtree of bt

element Data(bt):= if (ISEmpty(bt)) return error clse return the data in the root node of bt

Bintree Rchild(b1)::= if (IsEmpty(bt)) return error else return the nght subtree of bt

Samples of Trees

Complete Binary Tree

o ' *

Skewed Binary Tree

= . et

Differences between A Tree and A Binary Tree

«  The subtrees of a binary tree are ordered; those of a tree are not ordered.

— . - i
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| s trees.
(rees. But same when viewed as (r

Above two trees are different when viewed as binary
Properties of Binary Trees
1.Maximum Number of Nodes in BT

| - e
h ' ¥ ‘ L I"”J. I .
e The maximum number of nodes on level i of a binary tree 1s 27,

Ak ~
: . . . -1. k>=1.
e The maximum number of nodes 1n a binary tree of depth k 1s 2 I,k

Proof By Induction:

: - ' odes on
Induction Base: The root is the only node on level i=1.Hence ,the maximum number of n
* . "I ﬂ
level i=118 27 =2"=1.

Induction Hypothesis: Let I be an arbitrary positive integer greater than [.Assume that maximum
number of nodes on level i-1 is 2",

Induction Step: The maximum number of nodes on level i-1 1s 2"2 by the induction hypothesis. Since
each node in a binary tree has a maximum degree of 2,the maximum number of nodes on level 11s

: : . i-1
two times the maximum number of nodes on level i-1,or 2.
k

The maximum number of nodes in a binary tree of depth k 1s ZZH =2" -1 _

=1
2 Relation between number of leaf nodes and degree-2 nodes: For any nonempty binary tree, T, if
ng is the number of leaf nodes and n; the number of nodes of degree 2, then ng=ny+1.

PROOF-  Let n and B-denote the total number of nodes and branches in T.  Let ne, Ny, N2
represent the nodes with zero children, single child, and two children respectively.

B+l=n =2 B=n+2n,=> n+2n,+1=n,

e i,

3. A full binary tree of depth k is a binary tree of depth k having 2 -1 nodes, &>=0.

A binary l“‘-‘rf with 7 nodes and depth k is complete iff its nodes correspond to the nodes numbered
from 1 to n in the full binary tree of depth k.

Binary Tree Representation

epresented using two methods. Those methods are 1)Array

Representation 2)Linked Ligt Representation
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1)Array Representation: In array representation of binary tree, we use a one dimensional array (1-D

Array) to represent a binary tree. To represent a binary tree of depth 'n' using array representation,
we need one dimensional array with a maximum size of

A complete binary tree with n nodes (depth = log n + 1) is represented sequentially, then for

any node with index i, 1<=i<=n, we have: a) parent(i) is at i/2 if i'=1.1f i=1, i is at the root and
has no parent. b)left child(i) ia at 2i if 2i<=n. If 2i>n, then i has no left child. ¢) right child(i) is at
2i+11f 2i +1 <=n. 1f 2i +1 >n, then i has no right child.

Disadvantagea: (1) waste of apace [ 1] fa
(Z2) insertion/f/deletion problesnm [ 2 1 F_!
(3] C
(4]
Cadma | a (5] e
GS o e o
(3] =
ST ]
[6]

(7]
<D (2)
(2]

<>

-[15]

2. Linked Representation

We use linked list to represent a binary tree. In a linked list, every node consists of three fields. First
field, for storing left child-address, sccond for storing actual data and third for storing right child
address. In this linked list representation, a node has the following structure...

left child\ data \ right_child /

| left_child right_child

—

typedef struct node *tree_pointer;
typedef struct node {
int data;

tree_pointer left_child, right_child;};
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Binary Tree Traversals

When we wanted 1o display a binary tree, we need to follow some order In which all the nodes of

that binary tree must be displayed. In any binary tree displaying order of nodes depends on the

traversal method. Displaying (or) visiting order of nodes in a binary tree is called as Binary Tree
Traversal. -

There are three types of binary tree traversals.

[)In - Order Traversal 2)Pre - Order Traversal 3)Post - Order Traversal

Binary Tree Traversals

1.1n - Order Traversal { leftChild - roor - rightChild )

- D-J-8-F -n G -K-C—H

2. Pre - Order Traversal { root - leftChild rightChild )
_ﬂ-B-U—I-J‘F—E-G-If.-‘H

3. Post - Order Traversal ( leftChild - rightChild - roort )
I-J-D-F-B-K-G-H-C—aA

iYL N
i

1. In - Order Traversal ( leftChild - root - rightChild )

In In-Order traversal, the root node is visited between left child and right child. In this traversal, the
left child node is visited first, then the root node is visited and later we go for visiting right child
node. This in-order traversal is applicable for every root node of all subtrees in the tree. This is

performed recursively for all nodes in the tree.

In the above example of binary tree, first we try to visit left child of root node 'A’, but A's left child js

ode for left subtree. so we try to visit its (B's) left child 'D' and again D is a root for subtree -

oot n e i
1:111 nodes D, I and J. So we try to visit its left child 'T and it is the left most child. So first we

12
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visit 'T'then go for itg roo |
' tnode ' it TV e v AP R U - :
the left part of node B, Then, uiqf:-a“d later we visit D's right child 'J'. With this we have completed

B' ' . . [} . e - .
completed left part of node A Then ﬂnq next B's right child 'F' is visited. With this we have

parts of node A. Then we go for i
root C. So go for left child of C 5

Visit root node 'A'. With this we have completed left and root
ght part of the node A. In ri ght of A again there is a subtree with
we Visit'G' and then vici( (e . nd again it is a subtree with root G. But G does not have left part SO
Then visit rocy nUdETC:su G'sni ghl child K. With this we have completed the left part of node C.

stop the process and next vlmf C's right child 'H' which is the right most child in the tree so we

That means here we have visite

Traversal din the orderof 1-D-J-B-F-A-G-K-C-H using In-Order

In-Order Traversal for above example of binary tree is
I-D-J—B-F-A—G-K—C—H ) | _-

Algorithm
Until all nodes are traversed —

Step 1 — Recursively traverse left subtree.

Step 2 — Visit root node.
Step 3 — Recursively traverse right subtree.

void inorder(tree_pointer ptr) ~  /* inorder tree traversal */ Recursive

{

| it (ptr) { | _ -
[ inorder(ptr->left_child); | | .

printf(*%d”, ptr->data);

indorder(ptr->right_child);

}

) o
2. Pre - Order Traversal ( root - leftChild - nghtChild )
In Pre-Order traversal, the root node is visited before left child and right child nodes. In this
traversal, the root node is visited first, then its left child and later its right child. This pre-order
traversal is applicable for every root node of all subtrees in the

tree.

In the above example of binary tree, first we visit root node 'A’ then visit its left child 'B' which is a
root for D and F. So we visit B's left child "D’ and again D is a root for [ and J. So we visit D's |eft
child'l' which is the left most child. So next we go for visiting D's right child 'J'. With this we have ?
completed root, left and right parts of node D and root, left parts of node B. Next visit B's right
child'F". With this we have completed root and' ‘le'ﬂ parts of nodn_- A. So we go for A's right
child 'C' which is a root node for G and H. After visiting C, we go for its left child 'G’

which is a root

Pre——
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fo : . » 1d so we go for G's night chilq
r‘ node K. So next we visit left of G, but it does not have left Chl+ it C's right child 'H' which g ¢
With this we have comp] 3 d left parts. Next visit L5 e
_ pleted node C's root and Icit p sto the proce
?ﬁht' most child in tht trec. So e : I:?rc-()rder Traversal >
al means here we have visited in the order of A-B-D-I-J-F -C-G-K-H using |
- Algorithm
Until all nodes are traversed
Step | - Visit root node.
Step 2 - Rccumivcly traverse lefl subtree,
Step 3 - Recursively traverse ri ght subtree.
void preorder(tree_pointer ptr) /* preorder tree traversal */ Recursive
1f (ptr) {
prntf(*%d”, ptr->data):;
— preorder(ptr->left_child);
, preorder(ptr->right_child):
}
3. Post - Order Traversal ( leftChild - rightChild - root )
In ‘Pnst—Ord*e.r Iinafversal, the mn-t nnj:ie is visited after left child and right child. In this traversal, left
El'll]-d l]ﬂdl? 1s visited first, then its right child and then its root node. This is recursively performed
until the right most node is visited.
Here we have visitcd* in the order of I-J-D-F-B-K-G-H-C-A using Post-Order Traversal.
Algorithm
Until all nodes are traversed —
Step 1 — Recursively traverse left subtree. =
Step 2 — Recursively traverse right subtree.
Step 3 — Visit root node.
void postorder(tree_pointer ptr)  /* postorder tree traversal */ Recursive
{
if (ptr) {
postorder(ptr->left_child);
postorder(ptr->right_child); )
printf(“%d”, ptr->data);
h
} =
14

- e ——— e
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Ari ti
"thmetic Expression Using BT

INnorder trave sal
AR *cC * 1y, 8
brafim FHI‘I-I"F*‘.';II’JH.
revosrelesy trawve rgal
vErSARB > FE
rresfis Expressjicr

AB/C*f ,
POstlic expy ensioan
level order travers 4
LR B € nn

Trace Operations of Inorder Traversal

-

all ot |nn|';-h:f

TREES

‘ -
1 ) - —— - — - -

| : alvie in ot A lionmn Call of inorder Value in rooe &-l:t_iuﬁ_

N ! (W | «

. c 12 NUTL

N 11 C printl

< n 13 NUILL.

- v > - printl

- Ay - 1 4 >

= Prant 15 NLUILL. -

. NUT 14 D ]
| .. . _ prntft

s 4 printef 16 NUITL.

5 NULL : b printl

< - T | 8

. NULL pramal 18 NUILL N
E NUL. _ 17 I= printl

prinil 19 NUILL

Iterative Inorder Traversal (using stack)
void iter_inorder(tree_pointer node)” i
{ :
nttop=-1;  /* nitialize stack */
tree_pointer stackiMAX ST ACK SIZE];
for (5;) {
for (; node; node=node->left child)
add(&top,node);  /* add to stack */
node= delete(&top),  /* delete from stack */
if ('node) break; /* empty stack */
printf{*%D”, node->data);
| node = node->right_child;

15
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11-"\";?! Order Traversal (Using Queue) - T'.’“"““" without Statilf
?ﬂld ‘evel_order(tree._pointer pr) /* level order tree traversal
int ﬁ(ﬂt =reqar = 0‘
F%Jﬂoinlﬂ queue]MAX QUEUE SIZE];
I ('ptr) retum; /* empty queue */
addq(front, &rear, ptr);
for (;;) {
ptr = deleteq(&front, rear); e
if (ptr) { _
printf{"%d”, ptr->data);
if (ptr->left_child) — - = B
addq(front, &rear, ptr->left_child);
if (ptr=>right_child) _ - _
addq(front, &rear, ptr->right_child);
} —
else break;
) b
Level order Traversal is implemented with circular queue. In this order, we visit the root first, then root’s left child
followed by root’s right child. We continue in this manner, visiting the nodes at each new level from left most to rnight
most nodes.
We begin by adding root to the queue. The function operates by deleting the node at the front of the queue, printing
out the node’s data field, and adding the node’s left and right childrento the queue. The level order traversal for above
arithmetic expressionis+*E*D/CAB.

Binary Search Trees

Binary Search Tree Representation
Binary Search tree exhibits a special behavior. A node’s left child must have value less than its

parent's value and node's right child must have value greater than it's parent value.

16
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We're going to implement tree using node object and connecting them through references.

Definition: A binary search tree (BST) is a binary tree. [t may be empty. If it is not empty,then all
nodes follows the below mentioned properties -

e _Every clement has a unique key.
o The keys in a nonempty lefl subtrec (right subtree) are smaller (larger) than the key in the

root of subtree.
e The keys in a nonempty right subtree larger than the key in the root of subtree.

e The left and right subtrees are also binary search trees.

left sub-tree and right sub-tree and can be defined as —

left_subtree (keys) < node (key) < right_subtree (keys)

Fig: Example Binary Scarch Trees
ADT for Dictionary:

BST Basic Operations |
The basic operations that can be performed on binary search tree data structure, are following —

» Search — search an element in a binary search tree.
» Insert — insert an element into a binary search tree / create a tree.
e Delete — Delete an element from a binary search tree.

» Height -- Height of a binary search tree.

Searching a Binary Search Tree |
Let an element k is to search in binary search tree. Start search from root node of the search tree. If |
root is NULL, search tree contains no nodes and Sl?ﬂl'ch unsuccessful. Otherwise, compare k with
the key in the root. If k equals the root’s key, terminate scarch, if k is less than key value, search

17
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. - . | Jement K in right subtre
clement k in lefl subtree otherwise scarch elct

e The function search r'ecursively

scarches the subtrees.
Algorithm:Recursive search of a Binary Bprch 55 N

trec_pointer search(tree pointer root, int key) |
i

‘ [f there 1S NO such

retum a pointer (o the node that  conlains key. )

node, return NULL */
it ('root) return NUI I,
' (key == root->data) return root, -
if (key < root->data)
retum search(root->left child, key);
retum search(root->right_child,key);

\ —
L]

Algorithm: Iteraive search of a Binary Search Tree -

tree_pomiter search2(tree_pointer tree, int key) -

f
1

while (tree) { |
if (key = tree->data) retumn tree: |
if (key < tree->data)
tree = tree->left- child; =
else tree = tree->right -child; |
) - .
retum NULL;
'

Analysis of Recursive search and Iterative Search Algorithms:
t. Ifh s the height of the binary search tree, both algorithms perform search in O(h) time. Recursive search requires
additional stack space which is O(h).
Inserting into a Binary Search Tree
The very first insertion creates the tree. Afterwards, whenever an element is to be inserted. First

locate its proper location. Start search from root node then if data is less than key value, search
empty location in left sub tree and insert the data. Otherwise search empty location in right sub tree

and insert the data.

PUSSEEE — S ST e E————— e .
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fno L ity. In bi
de. The sertion operation 1S perfurm)r;das o

Step 4: If the tree is N
- 1S Not Empty, then check w
. , eck - —
I node (here it is root node), hether value of newNode is smaller or larger than the

——

(e.1., reach to NULL) where search terminates.

Step 7: After reaching a last ﬁnde, th

: en insert the newNode as left child i e
¢qual to that node else insert it ag right child f newNode is smaller or

Insert 80

Algorithm ' :

Insert 35

Create newnode
If root is NULL
then create root node
return
If root exists then -

compare the data with node.data

e

while until insertion position 1s located

If data is greater than node.data .

19
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UNIT- IV | | | | ‘
20to right subtree
else
goto left subtree
endwhile

nsert newnode

end If

Implementation

The implementation of insert function should look like this —

void insrr_th(int data) {
struct nj)de *tempNnd; = (struct node*) malloc(sizeof(struct node));
struct node *current;
struct node *;arnnt;
tempNode->data = data: -
tempNode->leftChild = NULL;
tempNode->rightChild = NULL;
/if tree is empty, create root node
if(root = NULL) { -
root = tempNode;
jelse { .-
current = root; ' - N
parent = NULL; ;
while(1) {
parent = turrent_;
//go to left of the tree
if(data < parent->data) {

current = current->leftChild;

/linsert to the left

if(current == NULL) {
paren t->leftChild = tempyqd_c;
o )
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llgo to right of the tree
else {

Ilnsert to the right
if(current == NULL) ¢

current = current->rightChijg.

" " TREES

Parent->rightChild = icmpNode: -

retum:

—

can be divided into two stages:

® search for a node to remove

[
Remove algorithm in detail

Now, let's see more detailed descri
for lookup, except we should track

iIf the node is found, run remove algorithm, -

ption of a remove algorithm. First stage is identical to algorithm
the parent of the current node. Second part is more tricky. There

are three cases, which are described below.

I.Node to be removed has no childre

link of the parent to NULL and dispos

n. --This case is quite simple. Algorithm sets corresponding
es the node.

Example. Remove -4 from a BST. ' ]
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UNIT- IV

- d algorithm links
2.Node 10 be removed has one child. In this case, node is cut from the tree an &

single child (with it's subtree) directly to the parent of the removed node.

@9 30
Sy

3.Node to be removed has two children. --This is the most complex case. The deleted node can be

replaced by cither largest key in its left subtree or the smallest in its right subtree. Preferably
which node has one child.

Deletion Operation in BST

In a binary search tree, the deletion operation is performed with O(log n) time complexity. Deletin
a node from Binary search tree has following three cases... °

Case 1: Deleting a Leaf node (A node with no children)

Case 2: Deleting a node with one child

22
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Case 3: Deleting a node wi, two children | TREES

Case 1: Deleting a |eaf node

We use the following Steps to delete a leaf node from BST

Step 1: Find the node to be deleted using scarch operation
Step 2: | |

ep 2: Delete the node using free function (If it is a leaf) and terminate the function.
Case 2: Deleting a node with one child

We use the following steps to delete a node with one child from BST..

Step 1: Find the node to be deleted using search operation

Step 2: If it has only one child, then create a link between its parent and child nodes.
Step 3: Delete the node using free function and terminate the function.

Case 3: Deleting a node with two children

We use the following steps to delete a node with two children from BST...

Step 1: Find the node to be deleted using search operation

Step 2: If 1t has two children, then find the largest node in its left subtree (OR) the smallest node in
its right subtree.

Step 3: Swap both deleting node and node which found in above step.

Step 4: Then, check whether deleting node came to case 1 or case 2 else goto steps 2 )

Step 5: If it comes to case 1, then delete using case 1 logic.
Step 6: If it comes to case 2, then delete using case 2 logic.

Step 7: Repeat the same process until node is deleted from the tree.

/* deletion in binary search tree */
void deletion(struct treeNode **node, struct treeNode **parent, int data) {

struct treeNode *tmpNode, *tmpParent;

if (*node == NULL)
return;

if ((*node)->data == data) {
/* deleting the-leaf node */ |
if (!("'node)-}leﬂ & & '(*node)->right) {

if (parent) { | |
e /* delete leaf node */

Scanned with CamScanner
www.Jntufastupdates.com

Scanned with CamScar23




CUNIT-IV - . i

if ((*parent)->left — *node)
(*parent)->left = NULL;:

- - . clse
(*parent)->right = NULL;
free(*node);
} else {
_ B /* delete root node with no children */
free(*node);

}

/* deleting node with one child */

} else if (!(*node)->right && (*node)->left) {
/* deleting node with left child alone */

— tmpNode = *node;
(*parent)->right = (*node)->left;
free(tmpNode);

*node = (*parent)->right;

} else if (*node)->right && !(*node)->left) {
/* deleting node with right child alone */
tmpNode = *node;

(*parent)->left = (*node)->right;
free(tmpNode);
(*node) = (*parent)->left;
y else 1if (!(*node)->right->left) {
}'*
* deleting a node whose right child
* is the smallest node in the right

* subtree for the node to be deleted.
#! -

lmprdc = *node;
(*node)->right->left = (*node)->left;

(*parent)->left = (*node)->nght;

free(tmpNode);

*node = (*parent)->left;
} else {

fi

* Deleting a node with two children.
* First, find the smallest node in
* the right subtree. Replace the
il * srhallest node with the node to be

* deleted. Then, do proper connections
* for the children of replaced node.
*/

tmpNode = (*node)->right;

while (tmpNode->left) {

24
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tmpParent = tmpNode;

— } tmpNode = tmpNode-::»lcﬂ;
tmpParent->left = tmpNode->ri ght;
tmpNode->left = (*node)->left:
tmpNode->right =(*node)->right;

~ free(*node);
*node = tmpNode;
)

} else if (data < (*node)->data) {
[* traverse towards left subtree */
deletion(&(*node)->lefl, node, data);

} else 1f (data > (*node)->data) {
/* traversing towards right subtree */
deletion(&(*node)->nght, node, data);
b

\
!

Height of a Binary Search Tree:

TREES »

Height of a Binary Tree For a tree with just one node, the root node, the height is defined to be 0, if

there are 2 levels of nodes the height is 1 and so on. A null tree (no nodes except

defined to have a height of 1.

The following height function in pseudocode is defined recursively

int height( Binary Tree Node t) { -
if tis a null tree
returmnm -1; )
hil = height( left subtree of t); ) —
hr = height( right subtree of t)__
h = 1 + maximum of hi and hr;

return h;

freccCc
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UNIT- IV | ' e =T *

as a height of 4. Tts left subtree has height 2 and its

For example, the following tree h
right subtree 3.

= () S

] {QK ?E‘ -

Qo G2 (13
G (20
I8
Example

Construct a Binary Search Tree by inserting the following sequence of numbers...

10,12,5,4,20,8,7.15 and 13

Above elements are inserted into a Binary Search Tree as follows...
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) ) TREES

r"" Insert (10) .insert (12) . insert (5) -
12 5 @@

insert (20) insert (8)
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